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Abstract—Social navigation in human crowds introduces chal-
lenges in motion planning, sensor capabilities, and the design
of algorithms for understanding complex interactions between
humans. To model the interaction between autonomous agents
and humans, many researchers adopt game-theoretic methods
due to its superior ability in explicitly capturing the relation-
ship using mathematical formulation. However, existing game-
theoretic approaches rely on pre-determined Gaussian processes
to represent the potential pedestrian trajectory distribution
without considering social norms and human intentions. On the
other hand, large language models (LLMs) have been widely used
for autonomous agent decision making. Their strong inference,
reasoning ability, and pre-trained prior knowledge in real-world
common sense is suitable for tackling the interactions with
humans. Therefore, in our project, we leverage LLMs to empower
one mixed-strategy Nash equilibrium social navigation algorithm
in human crowds, We evaluate our method in the SocNav
benchmark focusing on collision rate, time to goal and path
length. From the preliminary results, we believe our framework
works and worth in depth exploration in the future.

I. INTRODUCTION

Social navigation in human crowds presents significant
challenges for autonomous systems, particularly in motion
planning, sensor interpretation, and algorithmic understanding
of complex human interactions. To model interactions between
autonomous agents and humans, researchers predominantly
adopt game-theoretic methods due to their superior ability
to explicitly capture relationships through mathematical for-
mulation. However, existing game-theoretic approaches pre-
dominantly rely on pre-determined Gaussian processes [16]
to represent potential pedestrian trajectory distributions, criti-
cally overlooking nuanced social norms and scenario-specific
variations.

Concurrently, large language models (LLMs) have emerged
as a powerful tool for autonomous agent decision-making.
Their robust inference capabilities, advanced reasoning abil-
ities, and extensive pre-trained knowledge of real-world con-
texts make them particularly well-suited for navigating com-
plex human interactions.

In this study, we propose an innovative approach that
integrates LLM-powered insights into a mixed-strategy Nash
equilibrium social navigation algorithm. Our method aims to
enhance game-theoretic models by incorporating rich prior
knowledge and contextual understanding. We evaluated our
method using the SocNavBench [3] framework, focusing on
key performance metrics including collision rate, time to goal,
and robot path length. The simulation results demonstrate
significant improvements in navigation safety, with a 64%
reduction in collision incidents compared to the default game-
theoretic approach. However, this safety improvement corre-
lates with a slight increase in total travel time, highlighting

the trade-off between collision avoidance and navigation effi-
ciency.

Our research contributes to the growing body of work on
autonomous social navigation by demonstrating the potential
of LLM-augmented game-theoretic models in understanding
and navigating complex human interaction spaces. Future work
will focus on optimizing the balance between safety and
navigation efficiency.

II. RELATED WORK

A. Interaction Modeling in Motion Planning

Robot navigation in human environments has been a crit-
ical research topic, with methodological approaches evolving
through multiple trajectory prediction techniques. Early works
like Social GAN [4] and Social LSTM [1] established foun-
dational methods for predicting human movement in crowded
spaces. More recently, research has shifted towards sophisti-
cated game-theoretical strategies, leveraging Nash Equilibrium
models and game-theoretic Model Predictive Control (MPC) to
predict human paths and optimize robot decisions in dynamic
environments [16, 6]. These advanced frameworks typically
employ Gaussian processes to initialize agent strategies, using
constant velocity models for pedestrian movement.

Despite significant advancements, current approaches con-
tinue to face challenges, including high computational costs
and simplified assumptions about human behavioral ratio-
nality. The ongoing research underscores the need for more
nuanced methods that can efficiently capture the complex
dynamics of human-robot interactions.

B. LLM in Social Navigation

Large Language Models (LLMs) offer significant advan-
tages for social robot navigation by providing contextual un-
derstanding and adaptability in dynamic human environments.
Typically, the LLM-based methods rely on prompt engineering
to help LLMs or VLMs interpret interactions and provide
suitable directives, such as adjusting speed or changing direc-
tion. In previous work, methods like Co-NavGPT used LLMs
to coordinate multi-robot exploration by assigning frontiers
based on scene comprehension or human commands [18].
Similarly, VLM-Social-Nav utilized Vision-Language Models
to generate socially compliant navigation behaviors by scoring
robot actions based on social norms [15].

To deploy LLM into the social navigation algorithm, there
exist two potential challenges to overcome: the capabilities of
managing numeric data and using them to reason about the
robot’s real-world behaviors. Previous work has demonstrated
that LLM with well-designed frameworks could provide high-
level planning based on merely the task specification and



numeric data [18, 8]. Moreover, the reliable planning could
result from image data or merely textual input as well
[15, 14, 12, 17]. However, despite their robust reasoning
capabilities, LLM-based approaches face limitations like rel-
atively longer inference time, making real-time application
challenging. Furthermore, they struggle with precise low-level
controls, highlighting the need for optimization to improve
efficiency in practical settings.

III. METHODOLOGY

A. Problem Formulation

For social robot navigation, humans are no longer perceived
only as dynamic obstacles but also as social entities [9].
Their behaviors may change according to different robot’s
decisions. In this research, we simulate a scenario involving
one mobile robot and a variable number of pedestrians. We
treat this system as a discrete-time model with a consistent
time discretization interval. The state of the robot at time t is
represented as Rt. We also incorporate pedestrians’ informa-
tion Pt−H:t, which includes the humans’ positions across the
preceding H time steps.

Our goal is to generate discrete states containing positions
and yaws for the robot for the upcoming h time steps, based
on its current states, final goal G and surrounding pedestrians’
information. This procedure is illustrated by Formula 1.

Rt+1:t+h = BUM(Rt, G, SIE(Rt−H:t, Pt−H:t)), (1)

where function SIE() is implemented by a pretrained-LLM
designed to extract the social intentions of humans to help the
decision making of the robot, while the function BUM() is
a Bayesian update model to generate the determined strategy
for the robot based on the social intentions of surrounding
humans, thereby complete the social navigation task.

An overview of our method is depicted in Fig 1. Specifically,
for pedestrians within the robot’s safety threshold, we employ
the Social Intention Extractor (SIE) to extract their intentions
over the next few frames. The input of this LLM-based model
includes the pedestrian’s current state, the state of surrounding
pedestrians or robots, and the pedestrian’s historical trajectory
from recent frames. The output of SIE is humans’ high-level
intention (left, right or straight). With the high-level social
intention of humans, the Bayesian Update Model (BUM)
initializes the mixed strategies of humans and iterates the
robot’s mixed strategy until convergence, the final norminal
trajectory of the converged mixed strategy is the planned
trajectory.

B. LLM-based Social Intention Extraction Module

Unlike previous works directly using LLMs or VLMs to
generate high-level commands to assist the control of the
robot. The most powerful advantage of such foundation mod-
els is their prior knowledge about human society such as social
norms. They inherently understand some human behaviors.
Therefore, to utilize such powerful skills, we prompt the LLM
to act as the pedestrians and generate the high-level intention
in the short term.

To adapt the LLM for the role playing task of pedestrians,
we have crafted a detailed background description prompt to
aid the LLM’s comprehension of the task’s specific require-
ments. This background description outlines the role the LLM
will play (as a walking pedestrian), the walking environment
(such as in a lounge), the objective (to generate walking
intention in the next 1 second), the types of input information
required (such as surrounding information, historical trajectory
and current state), as well as the type of output expected. This
universal context will be incorporated into every scenario. An
example is depicted in Fig. 2. With these comprehensive task
background details, the LLM is expected to grasp the situation
and the corresponding requirements more effectively.

For the parameterized representations of surrounding in-
formation, history trajectory and current states, we transform
them into language descriptions. Specifically, we use detected
surrounding pedestrians or robot, parameterized by their ids
and locations, as the main content of the input. By utilizing
these scenario information prompts, the LLM is informed
about the environment and prompted to address the defined
problem. Through simple mathematical calculation, LLM can
get the relative positions of surrounding agents, which is
within the ability domain of current mainstream LLMs.

The expected output the SIE is one of the three high-level
intentions, we also record the log probabilities of such three
options. We utilize such output to help determine the policy
of the robot.

C. Bayesian Update Model

In this study, we choose to model mixed strategies for the
robot as mixed strategies enhance adaptability and handle
uncertainty in dynamic environments. They enable robots
to probabilistically balance social compliance and efficiency,
and avoid high-risk actions. Specifically, we follow [16] to
use a Bayesian Update framework. It enables iterative belief
refinement under uncertainty, ensuring adaptive and robust
decision-making in dynamic environments. Combined with
mixed strategies, it balances probabilistic action selection and
evidence integration. This synergy allows robots to navigate
efficiently while maintaining social compliance, leveraging
uncertainty modeling to optimize interactions in multi-agent
scenarios.

The process of the Bayesian Update Model is illustrated
in Algorithm 1. We model the initial nominal mixed strategy
for each agent using Gaussian processes. We use a constant
velocity model as the mean function for each pedestrian and
a global planner generates the mean function for the robot
as a trajectory from the robot’s current location toward the
navigation goal. After the initialization, we get the robot’s
mixed strategy pkr , ith pedestrian’s mixed strategy pki , and the
corresponding nominal strategy p

′k
r , p

′k
i .

With the generated high-level intention from SIE, we use
function Resample to resample the mixed strategy for the
pedestrian. The process of Resample function is demonstrated
in Algorithm 2. We use cross-product to judge left, right and
straight trajectories from original mixed strategies and then



Fig. 1. An overview of our method.

Fig. 2. An example of our background description prompt. Crowd images on the left were sourced from the University of Michigan website [10, 11].

utilize the recorded log probabilities from SIE to resample
the trajectories and get the pedestrian’s mixed strategy with
intention.

After getting the resampled pedestrian’s mixed strategies,
we use the idea of Bayesian Update to iteratively calculate the
interaction score and update the weights for the trajectories in
the mixed strategy. The CalculateScore function measures
the performance of the trajectory. We choose to use a logistic
function to effectively mapping the cost into the desired range
and reflecting the desired behavior in the cost function. The

detailed procedure is shown as Formula 2

Cr,i,m,l = β ·max
t

(
2− 2

1 + exp (−α · dr,i,m(t))

)
, (2)

dr,i,m,l(t) =
∥∥∥pkr,m(t)− p

′k
i,l(t)

∥∥∥2 , (3)

where pkr,m(t) and p
′k
i,l(t) are position vectors in R2 represent-

ing the robot and pedestrian i at time t. α and β are scaling
parameters.



Algorithm 1: Bayesian Update Model
1 Notation:

• Robot’s mixed strategy at kth step: pkr
• Robot’s nominal strategy at kth step: p

′k
r

• Pedestrian i’s mixed strategy at kth step: pki
• Pedestrian i’s nominal strategy at kth step: p

′k
i

• Total number of pedestrians: N
• Intention of pedestrian i: Ii

Input: p
′k
r , p

′k
i

Output: p
′k+1
r

2 for i ∈ [1, N ] do
3 Ii = SIE(p

′k
i );

4 p
′k
i = Resample(Ii, p

′k
i );

5 while not converge do
6 for i ∈ [1, N ] do
7 RobotScore = CalculateScore(p

′k
r , p

′k
i );

8 FinalRobotScore += RobotScore;
9 for j ∈ [i,N ], j ̸= i do

10 HumanScore = CalculateScore(p
′k
j , p

′k
i );

11 FinalHumanScore += HumanScore;

12 wk
i =
GetNormalizeAverage(FinalHumanScore);

13 HumanWeight.append(wk
i );

14 wk
r = GetNormalizeAverage(FinalRobotScore);

15 pk+1
r = pkr ;

16 p
′k+1
r = ComputeWeightedMean(pk+1

r , wk
r );

After getting the interaction scores, we use
GetNomalizeAverage function to calculate the normalize
average score and update the weight of trajectories in the
mixed strategy. The process is illustrated as follows:

C̄r,i,m =
1

Nλ

N∑
i=1

λ∑
l=1

Cr,i,m,l · wr,i, (4)

wr,i =
exp

(
−γ · C̄r,i,m

)
1

λ

∑λ
i=1 exp

(
−γ · C̄r,i,m

) , (5)

p
′k+1
r = p

′k
r +

N∑
i=1

wr,i · δp
′k
ri . (6)

After calculation, the final weighted mean of the mixed
strategy is outputted as the robot planned trajectory.

IV. EVALUATION

A. Environment Overview

For our evaluation methods, we adopted a simulator called
SocNavBench [2], a prerecorded pedestrian simulation frame-
work. The simulation provided 33 representative navigation
scenarios with real-world pedestrian trajectories. Pedestrian
trajectory data comes from the UCY [7] and ETH [13] dataset.
The pedestrian data includes varied crowd densities, and
demonstrates interesting pedestrian behaviors such as group-
ing, following, passing, pacing, and waiting. The pedestrian

Algorithm 2: Function Resample
1 Notation:

• Left trajectory probability: Pleft
• Straight trajectory probability: Pstraight
• Right trajectory probability: Pright
• Total number of trajectories to sample: M
• Reference direction vector: vref
• Direction vector of trajectory τm: vτm

• cz: The z-component of c
• Counts of trajectories: Nleft, Nstraight, Nright

Input: pki , Pleft, Pstraight, Pright, vref, M
Output: pk+1

i

2 Set Nleft ← 0, Nstraight ← 0, Nright ← 0.

3 for m = 1 to M do
4 Sample trajectory τm from pki based on probabilities

Pleft, Pstraight, Pright.
5 Obtain direction vector vτm of τm.
6 Compute cross product c = vref × vτm .
7 if cz > 0 then
8 Trajectory τm is classified as left.
9 Update Nleft ← Nleft + 1.

10 else if cz = 0 then
11 Trajectory τm is classified as straight.
12 Update Nstraight ← Nstraight + 1.
13 else
14 Trajectory τm is classified as right.
15 Update Nright ← Nright + 1.

16 pk+1
left = Nleft

M
, pk+1

straight =
Nstraight

M
, pk+1

right =
Nright
M

17 pk+1
i = {pk+1

left , pk+1
straight, pk+1

right }.

paths are replayed at the simulator tick rate with a 1:1 ratio to
the recorded time. In addition, the simulator also provides 3D
rendering and a depth map for algorithms to use to provide a
more realistic simulation.

There are four main maps in SocNavBench: ETH, Univ,
Zara, DoubleHotel. In each scenario, there are a number
of episodes, each consisting of a diversity of crowd sizes,
speeds, and densities, and the directions of motion with respect
to the robot’s traversal task. All the episodes have about
44 pedestrians on average. The output of each episode run
evaluate the robot trajectories based on four general evaluation
categories: path quality, motion, quality, pedestrian disruption,
and meta-statistics. We collected these metrics as a part of our
experiment benchmark.

Path quality quantifies the quality and efficiency of the
path generated by social navigation algorithm. Some metrics
are collected to measure path quality. Path length is the total
distance traversed by the robot in the episode in meters. Path
length ratio is the ratio of straight line distance between the
start and goal to the robot’s path length for any episode.
Path irregularity is the radians averaged over the absolute
angle between robot heading and the vector pointing to goal.
Goal traversal ratio is calculated for incomplete episodes. Path
traversal time is total simulator time taken to traverse the
robot’s path.

Motion quality includes average speed, average energy



expenditure, average acceleration, and average jerk. Average
jerk is the time derivative of acceleration of the robot over
its entire trajectory. It also includes the closest distance for
pedestrians and the time to the collision. Closest distance for
pedestrians is calculated by finding the distance to the closest
pedestrian at each robot trajectory segment. Time-to-collision
is found by considering the minimum time-to-collision to any
pedestrian in the environment at each robot segment.

Meta-statistics include the overall success rate, total pedes-
trian collisions, failure cases, and average planning waiting
time. Average waiting time is the average time the simulator
waits for the commands from the planner.

In our experiments, we focused on three key metrics:
collision number, travel time, and path length. We consider
collision number as a meta-statistics metric. Collision number
is the total number of collisions associated with the episode.
Travel time is our measure of motion quality. Travel time is the
total number of seconds in simulation time that the robot takes
to complete a single episode. Furthermore, we consider path
length as a criteria for path quality. Path quality is the total
distance traversed by the robot in the episode in meters. In
order to help us garner insights for qualitative results, we take
advantage of the result of each episode which also includes a
short video of the robot navigating in the map space. It also
includes images of each frame of the video. We manually
go through each video and its associated frames to observe
the patterns to which the robot react when navigating through
crowd.

B. Benchmarking Methods

In our evaluation, we implemented four methods in total to
assess the efficiency and quality of our proposed methodology.

The first method with which we experimented is the sam-
pling method. It samples trajectories from a connectivity graph
and evaluates them via heuristic cost functions and produces
the minimum cost trajectory.

The second method we implemented is the BRNE algo-
rithm which leverages Bayesian updates of non-symmetric and
multi-modal mixed strategies for multi-agents and generates
the trajectory from the trajectory samples from the agents’
mixed strategies.

We also implemented a variant of the BRNE approach, ef-
fectively generating the final trajectory from trajectory samples
using the Social GAN method [5]. A generative model would
captures the data distribution and a discriminative model
estimates the probability whether the sample comes from the
training data rather than the generator.

The fourth method is our proposed solution, which inte-
grates LLM to extract pedestrian intentions to generate robot
trajectories from the samples.

V. RESULTS

A. Quantitative Results

We evaluated the performance of the proposed algorithm
against three social navigation algorithm variants, focusing
on three key performance metrics: total number of collisions,

TABLE I
COMPARISON OF ALGORITHMS

Algorithm name Collision Number Travel time Path length
Sampling 57 17.79 16.51
BRNE 14 18.675 16.12
BRNE+Prediction 12 22.15 16.65
BRNE+LLM 5 21.95 16.55

average travel time, and average robot path length. The study
utilized the comprehensive SocNavBenchmark dataset, which
includes 33 distinct map configurations. To enhance exper-
imental variability, we introduced four reactive agents with
predefined start and end positions.

The results, detailed in Table I, reveal significant perfor-
mance differences across the algorithms. All three (BRNE)-
based algorithms demonstrated substantially lower collision
rates compared to the baseline Sampling algorithm. Within the
BRNE group, two algorithms enhanced with advanced human
intention prediction exhibited superior performance.

Notably, the LLM-driven BRNE+LLM algorithm achieved
the most remarkable collision reduction, generating only 36%
of the collisions produced by the default algorithm. While the
average robot path length remained consistent across all four
algorithms, the human intention prediction techniques (Mean
= 22.05) marginally increased average travel time relative to
the Sampling and default BRNE approaches (Mean = 18.23).

These findings highlight the potential of advanced intention
prediction techniques in social navigation while also under-
scoring the need for further research to optimize real-time
planning algorithms. Future work should focus on refining
travel time efficiency without compromising the significant
safety improvements demonstrated by the intention prediction
methods.

B. Qualitative Analysis

For qualitative results, we manually go through the video
frames and assess the robot trajectory when interacting with
pedestrian agents. We included four representative scenes here
to assess our solution’s behavior under various circumstances,
as outlined in Fig 3.

The first scenario is on the first row. We used this scenario
to assess our algorithm on the robot’s crossing behavior across
a dense crowd. This takes place when the robot is approaching
directly to the side of the pedestrian. The robot understands
the pedestrian’s intention to move to the right. Once the LLM
evaluates the pedestrian’s intention and concludes that it is
unable to pass the pedestrian from the front, it would produce
left as the pedestrian’s intention. Our algorithm would then
choose the trajectory samples to the left. The generated robot
trajectory directs the robot to the left of the pedestrian and
passes the pedestrian at its rear while the pedestrian keeps
heading to the right direction.

The second scenario is on the the second row. We used
this scenario to assess our algorithm on the robot’s behavior
when moving against a dense crowd. This happens when the
robot is approaching directly to the front of the pedestrian. In



Fig. 3. Qualitative assessment of our method.

this case, the pedestrian moves from top right to the bottom
position. Once the LLM understands the pedestrian’s intention,
it would conclude right, thus prompting the planner to sample
from the right-side trajectories of the generated trajectories.
The robot would follow the final trajectory and pass through
the pedestrian by turning to it’s right. This allows the robot
to pass the pedestrian from his the front while the pedestrian
keeps heading to the left direction.

The third scenario is on the third row. We used this scenario
to assess our algorithm on the robot’s behavior when moving
against a dense crowd. One difference is that the robot is
current moving from bottom right to top left. The passing
would occur when the robot approaches directly against a
dense crowd. The LLM extracts the pedestrians intention and
yields the output as left. This would allow the robot to sample
from the left-side trajectories of the generated trajectories from
mixed strategies. The robot would make a left turn to pass the
pedestrian from the front while the pedestrian keeps heading
to the right direction.

The fourth scenario is on the last row. We used this scenario
to assess our algorithm on the robot’s behavior when crossing

a dense crowd. This is a variation of the first scenario. In
this case, the robot is approaching directly to the side of the
pedestrian. The robot understands the pedestrian’s intention to
move to the left. However, the LLM adapts to the complex
environment of the pedestrian trajectories. Initially, the LLM
evaluates the pedestrian’s intention and concludes that it is
possible pass the pedestrian from the front. Hence, the LLM
would yield left as a response, driving the robot to take a
left turn and heading to the front of the pedestrian. However,
in the next few iterations, the LLM planner realizes that the
robot is unable to pass the pedestrian through its front. The
LLM changes its output to right, directing the robot to take
the right turn instead. Therefore, the robot would make a right
turn to pass the pedestrian at its rear while the pedestrian keeps
heading to the left.

VI. DISCUSSION

Based on the result we collected from the experiments,
our proposed method to integrate LLM reasoning ability in
the BRNE algorithm shows a significant reduction of the
number of collisions. Qualitative results also confirm this as



we discover the strong adaptability of LLM reasoning ability
to extract pedestrian intentions when the number of pedestrian
agents are dense in close proximity with the robot.

We also extracted travel time and path length from the
meta statistics collected from each episode run. Despite a
slight increase in travel time due to extended prediction in
the game-theoretic approach, we did not observe a significant
variance in our proposed method’s performance compared to
the other benchmarking methods mentioned above. We have
several hypothesis for the result. One possible reason could
be due to the limited selections of environments for testing.
Currently, SocNavBench only includes four maps. For each
map, the robot has an unoccluded view to the goal state.
If we introduce the map types to more complicated variants
where more features would require the robots to learn and
explore, then the path qualities of the generated trajectories
would change drastically.

Another reason might be related to the setup of reactive
agents we manually added to the simulation. In our exper-
iments, we added four reactive agents on top of the pre-
recorded agents provided by the simulation. The reactive
agents are steered in the direct of the robot, aiming to
eventually intersect with the robot’s paths. This would increase
the potential collisions to help us evaluate the planners’
behaviors under stress. One difficulty we face when adding
the additional reactive agents is it is hard to control the timing
when collisions between our reactive agents and the robot take
place. Hence, some reactive agents failed to probe the planner
in the way we conceived. Furthermore, we also notice that our
number of reactive agents might be too few to induce constant
change of directions the robot trajectory, hence this leads to
the similar path quality and motion quality.

Regarding the slight increase in travel time observed in
BRNE+Prediction and BRNE+LLM, potential contributing
factors may include taking longer detours to avoid collisions
and the additional computational overhead of the models.
Future research should focus on identifying the key drivers
behind this phenomenon and proposing targeted solutions.

Our work benefits significantly from the highly accessible
pedestrian simulation environment provided by SocNavBench,
facilitating our investigation of the existing BRNE approach
and implementation of our novel approach. Nonetheless, Soc-
NavBench comes with its own limitations. We were only able
to use the sampling baseline in SocNavBench. We were also
interested in adding the other baselines such as Social Force
as our benchmarks against our proposed solution. However,
the other methods were built on an outdated version of gym,
resulting in a series of dependency incompatibility issues. Due
to our tight time schedule, we eventually decided to adopt the
three aforementioned planners.

Furthermore, it is also important to point out Sim-to-
Real gap between SocNav environment and implementing
the algorithm on a physical robot. It is worth noting that
our experiments running on SocNav represent the pedestrian
locations as 2D coordinates. However, in order to test our
novel solution on a physical robot, it is important to revise our

planner to accommodate the increased degrees of freedom. It is
also important to note that the simulation runs in a global view
with the assumption that the robot knows about the trajectory
of the pedestrians a priori. This assumption could be very
dangerous in the real world because the perception modules of
the robot is always subject to deviations. In this case, it is im-
portant for the planner to correct the trajectory candidates from
pedestrian mixed strategies when it is deployed in real life.
Although we have shown promising results for our proposed
method to significantly reduce the number of collisions, we
should leverage the less computationally expensive perception
abilities of the physical robots to eliminate some configuration
spaces before allowing the BRNE algorithm to generate initial
trajectories.

Another aspect worth considering is the assumptions of
human agents and robots in the simulation. In the experiments
we ran, human agents move in a very low speed as they
are put under a speed threshold. Similarly, robots are also
subject to low speed limit. This assumption could be very
dangerous when implementing the proposed solutions onto
physical robots. Human pedestrians are very unpredictable in
real life and one very possible situation for the robot planner
to consider is when pedestrians interchange between high and
low speed. One possible future work is that more acceleration
variations of the robot and human can be introduced so that
the behavior of our proposed planner can be evaluated on this
new scenario. In this way, the robot motion planner can be
evaluated thoroughly while ensuring path quality and motion
quality once deploying to physical robots. More importantly,
this would help diminish the likelihood for our proposed
solution to induce high-stake collision with pedestrians when
they vary their acceleration in their paths.

When we were choosing LLM candidates for reasoning over
the pedestrians’ trajectories, we adopted ChatGPT 3 API to
output pedestrian intention. Using the base model out of the
box might not be a computationally efficient and performance
oriented approach. In the future, it might be helpful to curate
relevant datasets that include pedestrians history states, the
robot’s configurations, and the robot’s reaction to this situation
to ensure safe and efficient navigation scheme. It is likely to
further increase the robot’s path quality and motion quality
while decreasing the likelihood for collision. In addition, the
adoption of API might not be desirable on physical robots due
to the latency of network communication and instability of
network connections. One possible solution to the instability
is leveraging on-device inference off large language models
by fine-tuning smaller size base models with thoughtfully
curated datasets that would achieve roughly the same level
performance as the larger large language models.

Lastly, we currently use prompts to describe the past tra-
jectories of pedestrian agents and expect the language models
to output the pedestrians’ intentions. We see a potential to
integrate visual language models for the foundational models
to capture more nuanced social navigation clues. An example
would be asking the robot to stop at the gesture of a policeman
in the case of an emergency. Under such circumstances,



the foundational models need visual input to reason over
the pedestrians intention beyond their next possible position.
Furthermore, new ways to encode the contextual information
of the environment around the robot can be explored to reduce
the computational cost to tokenize the language model input.

VII. CONCLUSION

In this paper, we introduced a LLM-driven game-theoretic
planning approach and benchmarked it against three different
algorithms, spanning non-game-theoretic methods, the de-
fault game-theoretic baseline, and a game-theoretic approach
equipped with non-LLM trajectory prediction. Evaluation re-
sults demonstrates that LLMs can accurately capture social
norms, leading to safer navigation behaviors across multi-
ple real-world scenarios. These findings suggest that LLMs
hold significant promise for enriching robot motion plan-
ning through more sophisticated reasoning about pedestrian
intentions. Future research should explore the application of
LLMs in more complex environmental settings and rigorously
investigate both their strengths and limitations in reasoning.
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